CNN Based on Transfer Learning Models Using Data Augmentation and Transformation for Detection of Concrete Crack

نویسندگان

چکیده

Cracks in concrete cause initial structural damage to civil infrastructures such as buildings, bridges, and highways, which turn causes further is thus regarded a serious safety concern. Early detection of it can assist preventing enable advance by avoiding any possible accident caused while using those infrastructures. Machine learning-based gaining favor over time-consuming classical approaches that only fulfill the objective early detection. To identify surface cracks from images, this research developed transfer learning approach (TL) based on Convolutional Neural Networks (CNN). This work employs strategy leveraging four existing deep (DL) models named VGG16, ResNet18, DenseNet161, AlexNet with pre-trained (trained ImageNet) weights. validate performance each model, indicators are used: accuracy, recall, precision, F1-score. Using publicly available CCIC dataset, suggested technique outperforms testing accuracy 99.90%, precision 99.92%, recall 99.80%, F1-score 99.86% for crack class. Our validated an external BWCI, Kaggle. achieved 99.60%, 99.90% respectively. proposed method, CNN demonstrated be more effective at detecting structures also applicable other tasks.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transfer Incremental Learning Using Data Augmentation

Due to catastrophic forgetting, deep learning remains highly inappropriate when facing incremental learning of new classes and examples over time. In this contribution, we introduce Transfer Incremental Learning using Data Augmentation (TILDA). TILDA combines transfer learning from a pre-trained Deep Neural Network (DNN) as feature extractor, a Nearest Class Mean (NCM) inspired classifier and m...

متن کامل

metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)

هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...

Deep CNN Ensemble with Data Augmentation for Object Detection

We report on the methods used in our recent DeepEnsembleCoco submission to the PASCAL VOC 2012 challenge, which achieves state-of-theart performance on the object detection task. Our method is a variant of the R-CNN model proposed by Girshick et al. [4] with two key improvements to training and evaluation. First, our method constructs an ensemble of deep CNN models with different architectures ...

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2022

ISSN: ['1999-4893']

DOI: https://doi.org/10.3390/a15080287